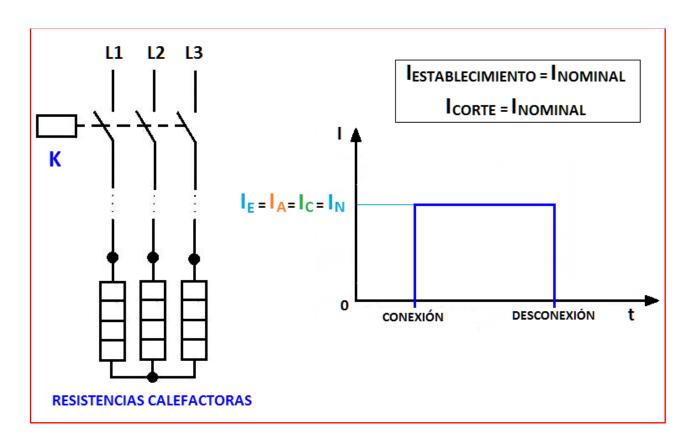
CATEGORIA DE EMPLEO AC-1: RESISTENCIAS.


Se aplica a todos los aparatos de uso de corriente alterna (receptores), cuyo factor de potencia es al menos o igual a 0,95 ($\cos \phi \ge 0,95$)

Ejemplos de utilización: calefacción y distribución. Elementos resistivos.

$$|_{\text{ESTABLECIMIENTO}}(I_{\text{E}}) = I_{\text{NOMINAL}}(I_{\text{N}})$$

$$|_{\text{CORTE}}(I_{\text{C}}) = I_{\text{NOMINAL}}(I_{\text{N}})$$

AC-1

NO HAY PUNTA DE INTENSIDAD AL ESTABLECIMIENTO. EN EL CORTE LA INTENSIDAD ES LA NOMINAL. LA INTENSIDAD DE ESTABLECIMIENTO Y LA DE CORTE SON IGUALES.

EL CONTACTOR SE ELIGE PARA LA INTENSIDAD NOMINAL.

ELECCIÓN POR	220V	440V	INTENSIDAD A		Contactos	Tensión	Referencia		Cantidad
LA POTENCIA	HP	HP	AC3	AC1	Auxiliares	Bobina	TeSys	Precio S/.	Indivisible
	3	5.5	9	25	1NA+1NC	24VAC	LC1D09B7		1
Schneider	3	5.5	9	25	1NA+1NC	48 VAC	LC1D09E7		1
	3	5.5	9	25	1NA+1NC	110 VAC	LC1D09F7		1
	3	5.5	9	25	1NA+1NC	220 VAC	LC1D09M7		1
	3	5.5	9	25	1NA+1NC	380 VAC	LC1D09Q7		1
	3	5.5	9	25	1NA+1NC	440 VAC	LC1D09R7		1
	4	7.5	12	25	1NA+1NC	24VAC	LC1D12B7		1
	4	7.5	12	25	1NA+1NC	110 VAC	LC1D12F7		1
	4	7.5	12	25	1NA+1NC	220 VAC	LC1D12M7		1
	4	7.5	12	25	1NA+1NC	380 VAC	LC1D12Q7		1
	4	7.5	12	25	1NA+1NC	440 VAC	LC1D12R7		1
	5.5	12	18	32	1NA+1NC	24VAC	LC1D18B7		1
Contactor tripolar LC1D	5.5	12	18	32	1NA+1NC	48 VAC	LC1D18E7		1
ECID	5.5	12	18	32	1NA+1NC	110 VAC	LC1D18F7		1
	5.5	12	18	32	1NA+1NC	220 VAC	LC1D18M7		1
	5.5	12	18	32	1NA+1NC	380 VAC	LC1D18Q7		1
	5.5	12	18	32	1NA+1NC	440 VAC	LC1D18R7		1
	7.5	15	25	40	1NA+1NC	24VAC	LC1D25B7		1
EverLink* Calidad de conexión duradera	7.5	15	25	40	1NA+1NC	110 VAC	LC1D25F7		1
	7.5	15	25	40	1NA+1NC	220 VAC	LC1D25M7		1
	7.5	15	25	40	1NA+1NC	380 VAC	LC1D25Q7		1
	7.5	15	25	40	1NA+1NC	440 VAC	LC1D25R7		1
	10	20	32	50	1NA+1NC	24VAC	LC1D32B7		1
	10	20	32	50	1NA+1NC	110 VAC	LC1D32F7		1
	10	20	32	50	1NA+1NC	220 VAC	LC1D32M7		1
	10 10	20 20	32 32	50 50	1NA+1NC 1NA+1NC	380 VAC 440 VAC	LC1D32Q7 LC1D32R7		1
	12	25	38	50	1NA+1NC	220 VAC	LC1D38M7		1
	15	30	40	60	1NA+1NC	24VAC	LC1D40AB7		1
	15	30	40	60	1NA+1NC	48VAC	LC1D40AE7		1
2 2 2	15	30	40	60	1NA+1NC	110 VAC	LC1D40AF7		1
to 20 800	15	30	40	60	1NA+1NC	220 VAC	LC1D40AM7		1
000	15	30	40	60	1NA+1NC	380 VAC	LC1D40AQ7		1
Mystly -	15	30	40	60	1NA+1NC	440 VAC	LC1D40AR7		1
	20	40	50	80	1NA+1NC	24VAC	LC1D50AB7		1
006	20	40	50	80	1NA+1NC	110 VAC	LC1D50AF7		1
T-MICHIGAN CO	20	40	50	80	1NA+1NC	220 VAC	LC1D50AM7		1
000	20	40	50	80	1NA+1NC	440 VAC	LC1D50AR7		1
	25	50	65	80	1NA+1NC	24VAC	LC1D65AB7		1
	25	50	65	80	1NA+1NC	110 VAC	LC1D65AF7		1
	25	50	65	80	1NA+1NC	220 VAC	LC1D65AM7		1
	25	50	65	80	1NA+1NC	440 VAC	LC1D65AR7		1
Contactor tripolar	30	61	80	125	1NA+1NC	24 VAC	LC1D80B7		1
LC1D40A ··	30	61	80	125	1NA+1NC	110 VAC	LC1D80F7		1
LC1D50A •• LC1D65A ••	30	61	80	125	1NA+1NC	220 VAC	LC1D80M7		1
20.200,	30	61	80	125	1NA+1NC	440 VAC	LC1D80R7		1
	34	68	95	125	1NA+1NC	110 VAC	LC1D95F7		1
	34	68	95	125	1NA+1NC	220 VAC	LC1D95M7		1
	34	68	95	125	1NA+1NC	440 VAC	LC1D95R7		1
	40	80	115	200	1NA+1NC	110 VAC	LC1D115F7		1
	40	80	115 150	200	1NA+1NC	220 VAC	LC1D115M7		1
	54 54	108 108	150	200 200	1NA+1NC 1NA+1NC	110 VAC 220 VAC	LC1D150F7 LC1D150M7		1
	54	108	150	200	1NA+1NC	440 VAC	LC1D150M7		1
	J-T	100	100	200	114/1 T 1110	770 V/O	E31D130117		'

EJEMPLO:

TENEMOS UNAS RESISTENCIAS DE CALEFACCIÓN CONMUTADAS POR UN CONTACTOR. POTENCIA DE LAS RESISTENCIAS 16 Kw.

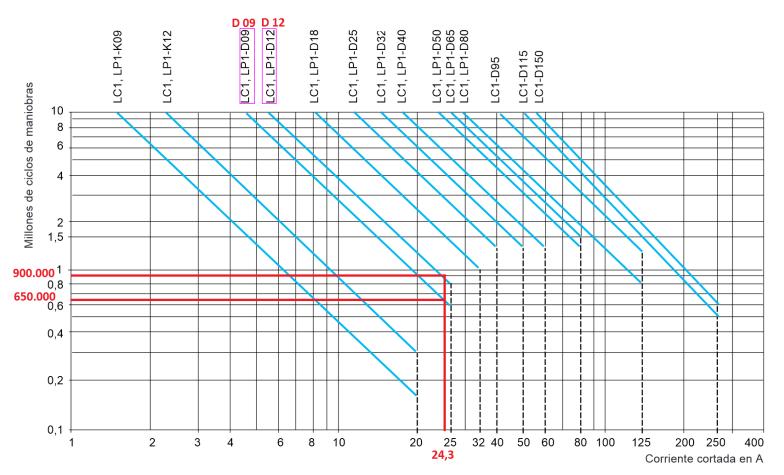
TENSIÓN 400 V.

 $COS \varphi = 0.95$.

SOLUCIÓN:

LA CATEGORÍA DE EMPLEO ES AC1 POR SER RESISTENCIAS DE CALEFACCIÓN INDUSTRIAL.

FÓRMULA UTILIZADA PARA CALCULAR LA INTENSIDAD NOMINAL DE LA CARGA SEGÚN LA POTENCIA:


$$P_{a} = \sqrt{3} \cdot U \cdot I_{n} \cdot \cos \varphi \text{ (W)} \longrightarrow I_{n} = \frac{P_{a}}{\sqrt{3} \cdot U \cdot \cos \varphi} \longrightarrow I_{n} = \frac{16.000 \text{ W}}{\sqrt{3} \cdot 400 \text{ V} \cdot 0.95} = 24.3 \text{ A}$$

DURABILIDAD ELÉCTRICA:

PARA LOS VALORES DE INTENSIDAD DE LA TABLA, CADA CONTACTOR TIENE UNA DURABILIDAD DETERMINADA, ES DECIR UN NÚMERO DE MANIOBRAS (CONEXIÓN+DESCONEXIÓN) QUE SOPORTAN SUS CONTACTOS SIN QUE DEBAN SER CAMBIADOS.

UNA CIFRA MUY FRECUENTE ES LA DE UN MILLÓN DE MANIOBRAS.

DURABILIDAD ELÉCTRICA EN CATEGORÍA AC-1 U_e ≤ 440 V

EN EL EJEMPLO ANTERIOR:

CON EL CONTACTOR D09 TENDRÍAMOS UNA DURABILIDAD ELÉCTRICA PARA REALIZAR 650.000 MANIOBRAS.

CON EL CONTACTOR D12 TENDRÍAMOS UNA DURABILIDAD ELÉCTRICA PARA REALIZAR 900.000 MANIOBRAS.

EJERCICIO 1:

INDICA QUÉ CATEGORÍA ES LA MÁS ADECUADA PARA UN CONTACTOR QUE DEBE CONECTAR UNA RESISTENCIA ELÉCTRICA DE REFUERZO EN LA PUESTA EN MARCHA DE UN SISTEMA DE CLIMATIZACIÓN CUANDO LA TEMPERATURA EXTERIOR ES DEMASIADO BAJA. LA RESISTENCIA ELÉCTRICA ES DE 5 KW DE POTENCIA Y SE CONECTA A TENSIÓN: $3 \approx 400 \text{ V}$. COS ϕ = 0,95.

QUEREMOS SABER LA **I**_{CORTE}, CATEGORÍA DE EMPLEO Y EL CALIBRE DEL CONTACTOR DE LA **SERIE D.** PARA UNA DURABILIDAD DE 2 MILLONES DE MANIOBRAS.

EJERCICIO 2:

TENEMOS QUE REALIZAR LA INSTALACIÓN DE UNAS RESISTENCIAS PARA CALEFACCIÓN CONMUTADAS POR CONTACTOR.

POTENCIA: 15 KW. TENSIÓN: 3 \approx 400 V. COS φ = 0,95.

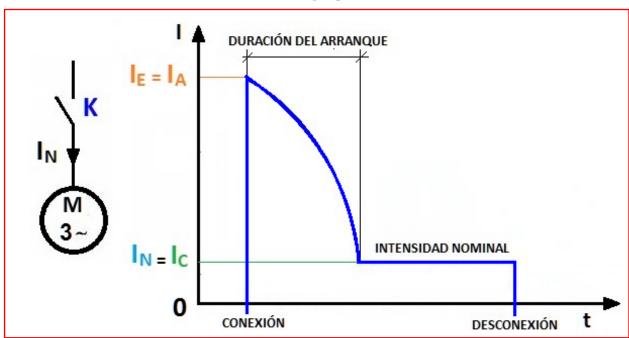
QUEREMOS SABER LA **I**_{CORTE}, CATEGORÍA DE EMPLEO Y EL CALIBRE DEL CONTACTOR DE LA **SERIE D.** PARA UNA DURABILIDAD DE 1,5 MILLONES DE MANIOBRAS.

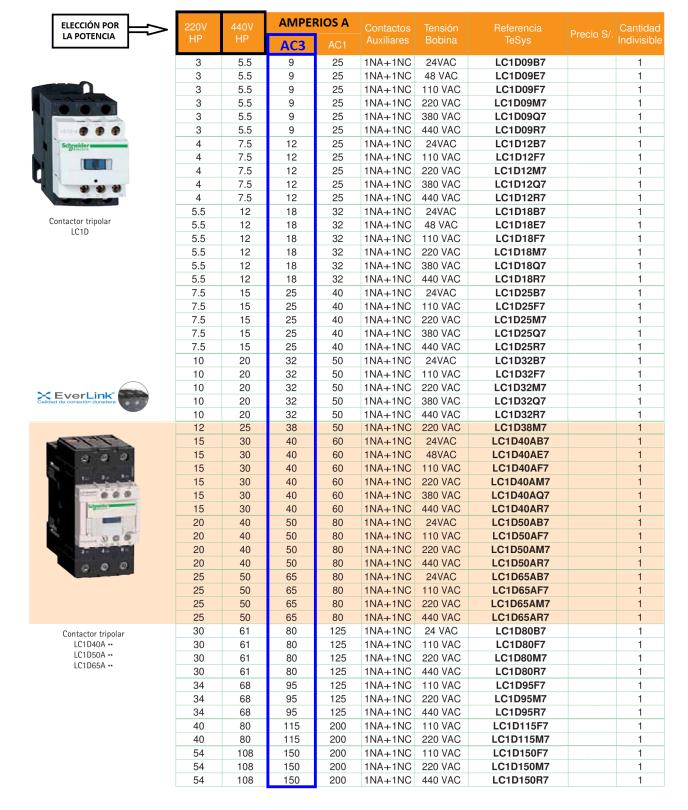
CATEGORIA DE EMPLEO AC-3: CORTE A MOTOR LANZADO.

Se aplica a los motores de jaula en los que **el corte se realiza con el motor lanzado**. **En el cierre**, el contactor establece la corriente de arranque, que es de **3 a 7 veces la corriente nominal del motor**, según sean sus características.

Ejemplos de utilización: todos los motores de jaula habituales: **ascensores, escaleras mecánicas, cintas transportadoras, compresores, ventiladores, bombas, trituradoras, climatizadores, etc.**

UN MOTOR TRIFÁSICO CONSUME DE 3 A 7 VECES LA INTENSIDAD NOMINAL EN EL ARRANQUE.


UN CONTACTOR TRABAJA EN ESTA CATEGORÍA DE EMPLEO CUANDO CONMUTA MOTORES TRIFÁSICOS Y ESTOS LLEGAN A ESTABILIZAR LA VELOCIDAD DE RÉGIMEN.


EN ESTAS CONDICIONES, EL CONTACTOR TIENE POR INTENSIDAD DE ESTABLECIMIENTO LA DE ARRANQUE DEL MOTOR Y POR INTENSIDAD DE CORTE LA NOMINAL DEL MOTOR.

$$I_{\text{ESTABLECIMIENTO}}(I_{\text{E}}) = I_{\text{ARRANQUE}}(I_{\text{A}}) = 3 \text{ a 7 x } I_{\text{NOMINAL}}(I_{\text{N}})$$

$$I_{\text{CORTE}}(I_{\text{C}}) = I_{\text{NOMINAL}}(I_{\text{N}})$$

AC-3

EJEMPLO:

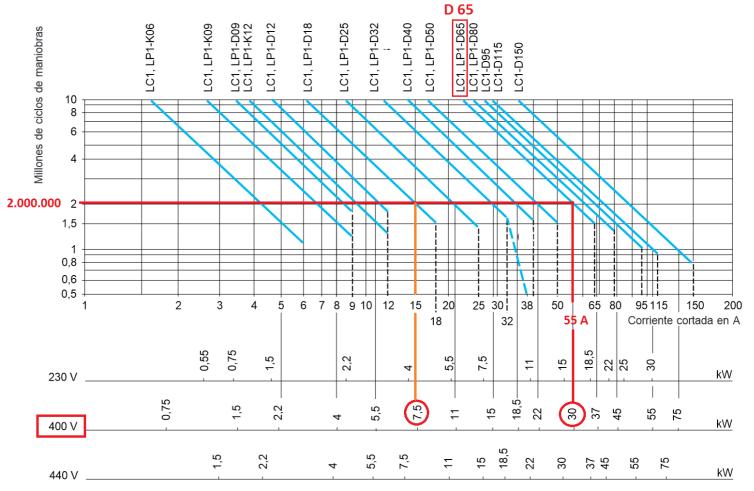
Sea un motor de características:

30 Kw. a 1460 rpm. 415 V.

 $I_{N} = 55 A$

 $\cos \varphi = 0'87.$

2 millones de maniobras.


Tras su período de arranque directo, trabaja cierto tiempo a su carga nominal antes de ser desconectado. El contactor a colocar trabaja, evidentemente, en categoría AC3.

El motor tiene una intensidad nominal de 55 A. Escogeremos un contactor D65.

También en categoría AC3, los contadores tienen su propia gráfica de **durabilidad**. Ésta nos permite conocer su número previsible de maniobras cuando trabajan a su intensidad nominal de empleo, o a otras inferiores.

Para obtener dicha gráfica, el fabricante realiza las maniobras de conexión con una intensidad seis veces mayor que la de desconexión.

Potencia de empleo en kW-50 Hz

LA CATEGORÍA DE EMPLEO DE UN CONTACTOR EN CATEGORÍA AC-3 ES SU DATO MÁS CARACTERÍSTICO, Y ES EL QUE DEFINE SU CALIBRE.

EN LA SERIE DE CONTACTORES D LA CIFRA ADJUNTA ES PRECISAMENTE DICHA INTENSIDAD. EL CONTACTOR DEL EJEMPLO D 65, TIENE UNA I_E (AC-3)= 65 A. (MÁXIMA INTENSIDAD QUE ES CAPAZ DE ESTABLECER EL CONTACTOR). PARA ESCOGER EL CONTACTOR QUE VA A TRABAJAR EN CATEGORÍA AC-3 BASTA CON CONOCER LA INTENSIDAD NOMINAL DEL MOTOR I_N , Y ESCOGER UNO QUE VERIFIQUE QUE I_E (AC-3) $\geq I_N$.

EJEMPLO:

Un contactor D18 va a trabajar en categoría AC3 conmutando en arranque directo un motor de:

7,5 kW, 1450 rpm. $I_N = 15,2$ A. $\cos \varphi = 0,84$. 400 V.

El contactor es adecuado, ya que el consumo nominal es de 15,2 A.

Serán previsibles 2 millones de maniobras. SEGÚN LA TABLA DE DURABILIDAD.

EJERCICIO 3:

TENEMOS QUE REALIZAR LA INSTALACIÓN DE UN MOTOR TRIFÁSICO DE JAULA DE ARDILLA UTILIZADO COMO VENTILADOR, GOBERNADO POR UN CONTACTOR. TRAS SU PERIODO DE ARRANQUE DIRECTO, TRABAJA 15 MINUTOS A SU CARGA NOMINAL ANTES DE SER DESCONECTADO. POTENCIA: 45 KW. TENSIÓN: $3 \approx 500 \text{ V.} \cos \phi = 0'87$.

QUEREMOS SABER LA I_C, CATEGORÍA DE EMPLEO Y EL CALIBRE DEL CONTACTOR DE LA **SERIE D.** PARA UNA DURABILIDAD DE 1 MILLON DE MANIOBRAS.

CATEGORIA DE EMPLEO AC-4:

Esta categoría se aplica a las aplicaciones con marcha "a impulsos" y frenado a contracorriente con motores de jaula.

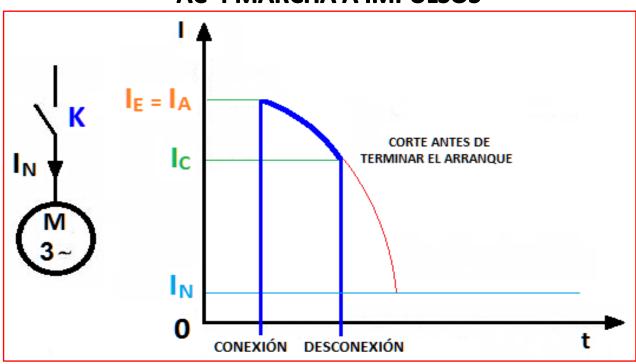
El contactor se cierra bajo un pico de corriente que puede alcanzar de **3 a 7 veces la corriente nominal del motor**. Al abrirse, corta esta misma corriente bajo una tensión tan elevada que la velocidad del motor se debilita. Esta tensión puede llegar a ser igual que la tensión de la red. **El corte resulta brusco.**

Ejemplos de utilización: máquinas de impresión, máquinas de trefilar, elevadores, equipos de la industria metalúrgica.

MARCHA A IMPULSOS. I_{CORTE} = 6 x I_N

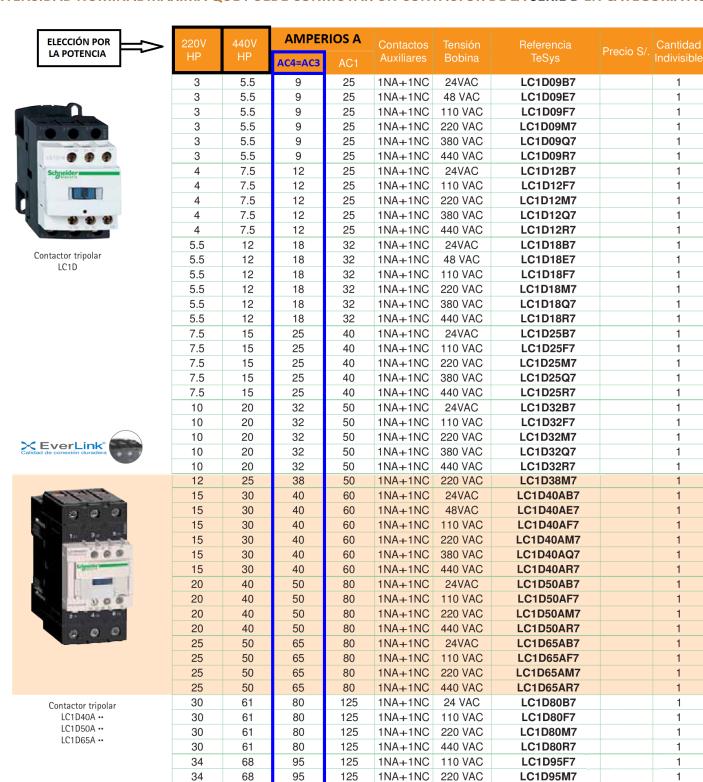
LA DURABILIDAD DE UN CONTACTOR QUE TRABAJA EN AC4 ES MUCHO MENOR QUE LA QUE TRABAJA EN AC1 Y AC3.

Un contactor trabaja en esta categoría de empleo cuando conmuta motores trifásicos en condiciones que podemos llamar "especiales". La más notable de ellas es la marcha del motor "a impulsos", en la que éste no llega a alcanzar su velocidad de régimen porque ha sido desconectado rápidamente de la red.


En tales condiciones, la intensidad de establecimiento y la de corte del contactor son elevadas.

$$I_{\text{ESTABLECIMIENTO}}(I_{\text{E}}) = I_{\text{ARRANQUE}}(I_{\text{A}}) = 3 \text{ a } 7 \text{ x } I_{\text{NOMINAL}}(I_{\text{N}})$$

$$I_{\text{CORTE}}(I_{\text{C}}) = \text{HASTA 6 x } I_{\text{NOMINAL}}$$


Encontramos motores de tales condiciones en trabajos en máquinas automáticas de alta velocidad, como impresoras, rotativas, envasadoras, etc.

AC-4 MARCHA A IMPULSOS

CONTACTORES SERIE D:

INTENSIDAD NOMINAL MAXIMA QUE PUEDE CONMUTAR UN CONTACTOR DE LA SERIE D EN CATEGORÍA AC-4:

EJEMPLO:

Un motor trifásico de 9 kW en red de 400 V, 18,4 A, trabaja en arranque directo y paro durante la aceleración, cuando su consumo es el triple del nominal.

125

200

200

200

200

200

1NA+1NC

1NA+1NC

1NA+1NC

1NA+1NC

1NA+1NC

1NA+1NC

440 VAC

110 VAC

220 VAC

110 VAC

220 VAC

440 VAC

LC1D95R7

LC1D115F7

LC1D115M7

LC1D150F7

LC1D150M7

LC1D150R7

1

1

1

1

1

1

95

115

115

150

150

150

68

80

80

108

108

108

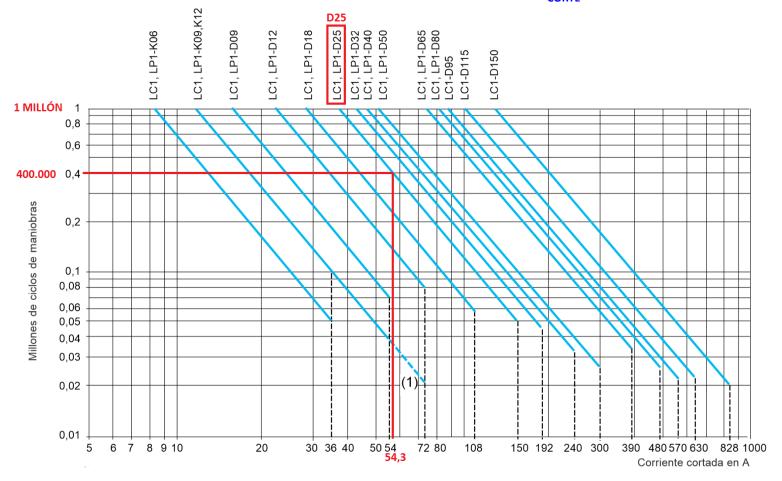
Su contactor trabaja, evidentemente, en categoría AC4.

34

40

40

54


54

54

 $I_n = 18'1 \text{ A } 3 \cdot I_n = 54'3 \text{ A}$

DURABILIDAD ELÉCTRICA EN CATEGORÍA AC-4 U_e ≤ 440 V

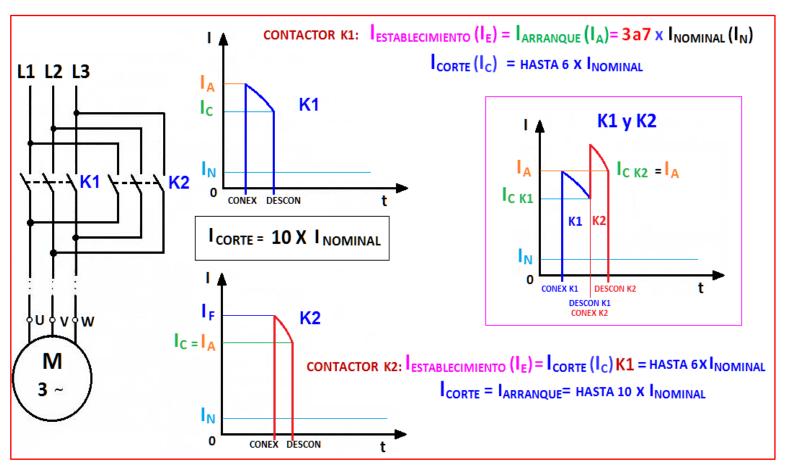
MIRAREMOS EL NÚMERO DE MANIOBRAS CON UNA INTENSIDAD CORTE = 54'3 A EN AC-4

De la Figura anterior obtenemos que un contactor SERIE D25 nos asegura 400.000 MANIOBRAS.

EJERCICIO: TENEMOS QUE REALIZAR LA INSTALACIÓN DE UN MOTOR TRIFÁSICO DE JAULA DE ARDILLA GOBERNADO POR UN CONTACTOR. TRABAJA EN ARRANQUE DIRECTO Y PARO DURANTE LA ACELERACIÓN, CUANDO SU CONSUMO ES EL CUÁDRUPLE DEL NOMINAL.

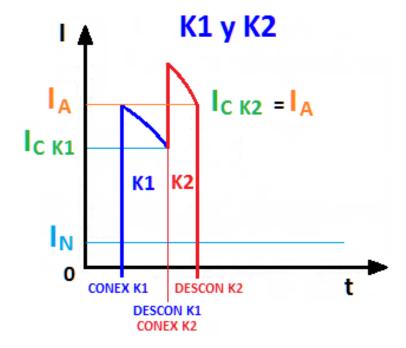
POTENCIA: 9 KW. TENSIÓN: 3 \approx 400 V. $\cos \varphi = 0.85$.

QUEREMOS SABER LA **I**_c , CATEGORÍA DE EMPLEO Y EL CALIBRE DEL CONTACTOR DE LA **SERIE D.** PARA UNA DURABILIDAD DE 300.000 MANIOBRAS.

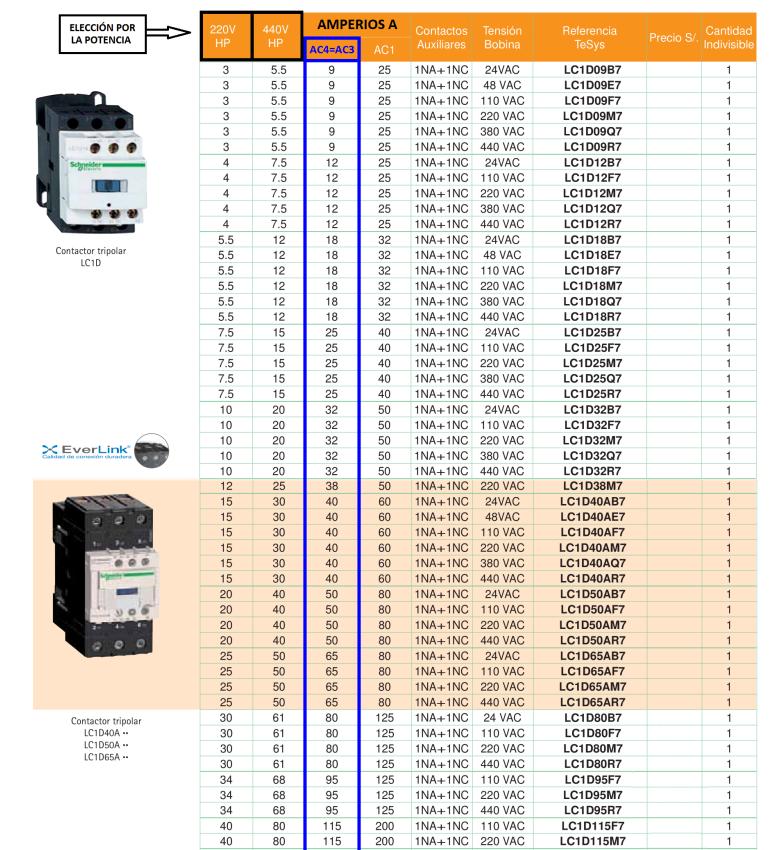

FRENADO A CONTRACORRIENTE: I_{CORTE} = 10 x I_N

Otro régimen del motor en el que sus contactores trabajan en categoría AC4 es el que tiene previsto un **frenado por "contracorriente"**. En dicho sistema, se detiene rápidamente el motor desconectándolo de la red y volviendo a conectarlo rápida y momentáneamente con dos fases intercambiadas entre sí. El motor experimenta una fortísima deceleración y se desconecta de nuevo de la red antes de que empiece a girar en sentido contrario.

La intensidad de establecimiento es muy elevada y la de corte coincide con la de arranque .


```
CONTACTOR K1: I_{\text{ESTABLECIMIENTO}}(I_{\text{E}}) = I_{\text{ARRANQUE}}(I_{\text{A}}) = 3 \text{ a } 7 \text{ x } I_{\text{NOMINAL}}(I_{\text{N}})
I_{\text{CORTE}}(I_{\text{C}}) = \text{HASTA 6 x } I_{\text{NOMINAL}}
CONTACTOR K2: I_{\text{ESTABLECIMIENTO}}(I_{\text{E}}) = I_{\text{CORTE}}(I_{\text{C}}) \text{ K1} = \text{HASTA 6 x } I_{\text{NOMINAL}}
I_{\text{CORTE}} = I_{\text{ARRANQUE}} = \text{HASTA 10 x } I_{\text{NOMINAL}}
```

AC-4 FRENADO A CONTRACORRIENTE



I_F = INTENSIDAD DE FRENADO

Frenado a contracorriente:

CONTACTORES SERIE D:

EJERCICIO:

54

54

54

108

108

108

150

150

150

TENEMOS QUE REALIZAR LA INSTALACIÓN DE UN MOTOR TRIFÁSICO DE JAULA DE ARDILLA UTILIZADO EN UNA GRÚA, GOBERNADO POR DOS CONTACTORES. TRABAJA EN ARRANQUE DIRECTO Y FRENADO A CONTRACORRIENTE CON INVERSIÓN DEL SENTIDO DE GIRO. POTENCIA: 5,5 KW. TENSIÓN: $3 \approx 400 \text{ V}$. $\cos \varphi = 0.81$.

1NA+1NC

1NA+1NC

1NA+1NC

110 VAC

220 VAC

440 VAC

LC1D150F7

LC1D150M7

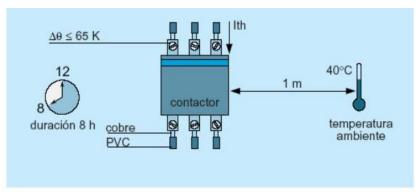
LC1D150R7

1

1

QUEREMOS SABER LA \mathbf{I}_{c} , CATEGORÍA DE EMPLEO Y EL CALIBRE DEL CONTACTOR DE LA **SERIE D.** PARA UNA DURABILIDAD DE 400.000 MANIOBRAS.

200

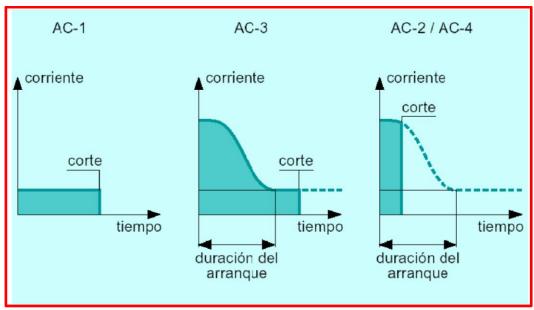

200

200

SERVICIO PERMANENTE:

EL CONTACTOR PERMANECE CONECTADO CIRCULANDO POR SUS CONTACTOS PRINCIPALES LA INTENSIDAD DE EMPLEO ININTERRUMPIDAMENTE POR TIEMPO INDEFINIDO Y SUPERIOR A 8 HORAS.

CUANDO UN CONTACTOR TRABAJA MAS DE 8 HORAS SEGUIDAS SE TIENE QUE ELEGIR UN CONTACTOR DE UN CALIBRE SUPERIOR.


Ensayo de recalentamiento de un contactor

PROCEDIMIENTO PARA LA ELECCIÓN DE UN CONTACTOR:

- \blacksquare SE DETERMINA LA INTENSIDAD NOMINAL DEL RECEPTOR: \blacksquare_N (EN TABLA DE INTENSIDADES O CON LA FÓRMULA DE LA POTENCIA).
- SE DEDUCE LA CATEGORÍA DE SERVICIO EN FUNCIÓN DE LA NATURALEZA Y USO DEL RECEPTOR. AC1, AC3, AC4.
- SE DETERMINA LA INTENSIDAD DE ESTABLECIMIENTO

 ESTABLECIMIENTO.
- ELEGIR UN CONTACTOR CON UN CALIBRE SUPERIOR AL VALOR DE ESTABLECIMIENTO.
- Y CON LA CORTE SE ESTABLECE LA DURABILIDAD ELÉCTRICA DEL CONTACTOR EN LAS TABLAS.

GRÁFICAS DE LAS CATEGORÍAS DE EMPLEO:

VALORES DE LA CORRIENTE DE CIERRE Y LA CORRIENTE DE CORTE RESPECTO

A LA CORRIENTE NOMINAL:

Corriente de carga nominal de los motores asincrónicos de jaula

Motores trifásicos de 4 polos 50/60 Hz

Pote	encia	200/ 208 V	220V	230 V (1)	380V	400V	415V	433/ 440V	460V (1)	500/ 525V	575V (1)	660V	690V	750V	1000V
Kw	HP	Α	Α	Α	Α	А	Α	Α	Α	А	А	Α	Α	Α	Α
0,37	0,5	2	1,8	2	1,03	0,98	-	1	1	1	0,8	0,6	-	-	0,4
0,55	0,75	3	2,75	2,8	1,6	1,5	-	1,36	1,4	1,21	1,1	0,9	-	-	0,6
0,75	1	3,7	3,5	3,6	2	1,9	2	1,68	1,8	1,5	1,4	1,1	-	-	0,75
1,1	1,5	5	4,4	5,2	2,6	2,5	2,5	2,37	2,6	2	2,1	1,5	-	-	1
1,5	2	6,8	6,1	6,8	3,5	3,4	3,5	3,06	3,4	2,6	2,7	2	-	-	1,3
2,2	3	10	8,7	10	5	4,8	5	4,42	4,8	3,8	3,9	2,8	-	-	1,9
3	-	12,6	11,5	-	6,6	6,3	6,5	5,77	-	5	-	3,8	3,5	-	2,5
-	5	-	-	15,2	-	-	-	-	7,6	-	6,1	-	-	-	3
4	-	16,2	14,5	-	8,5	8,1	8,4	8,0	-	6,5	-	4,9	4,9	-	3,3
5,5	7,5	22	20	22	11,5	11	11	10,4	11	9	9	6,6	6,7	-	4,5
7,5	10	28,8	27	28	15,5	14,8	14	13,7	14	12	11	6,9	9	-	6
9	-	36	32	-	18,5	18,1	17	16,9	-	13,9	-	10,6	10,5	-	7
11	15	42	39	42	22	21	21	20,1	21	18,4	17	14	12,1	11	9
15	20	57	52	54	30	28,5	28	26,5	27	23	22	17,3	16,5	15	12
18,5	25	70	64	68	37	35	35	32,8	34	28,5	27	21,9	20,2	18,5	14,5
22	30	84	75	80	44	42	40	39	40	33	32	25,4	24,2	22	17
30	40	114	103	104	60	57	55	51,5	52	45	41	54,6	33	30	23
37	50	138	126	130	72	69	66	64	65	55	52	42	40	36	28
45	60	162	150	154	85	81	80	76	77	65	62	49	46,8	42	33
55	75	200	182	192	105	100	100	90	96	80	77	61	58	52	40
75	100	270	240	248	138	131	135	125	124	105	99	82	75,7	69	53
90	125	330	295	312	170	162	165	146	156	129	125	98	94	85	65
110	150	400	356	360	205	195	200	178	180	156	144	118	113	103	78
132	-	480	425	-	245	233	240	215		187	-	140	135	123	90
-	200	520	472	480	273	222	260	236	240	207	192	152	-	136	100
160	-	560	520	-	300	285	280	256	-	220	-	170	165	150	115
-	250		-	600	-	-	-	-	300	-	240	200	-	-	138
200	-	680	626	-	370	352	340	321	-	281	-	215	203	185	150
220	300	770	700	720	408	388	385	353	360	310	288	235	224	204	160
250	350	850	800	840	460	437	425	401	420	360	336	274	253	230	200
280	-	-	-	-	528	-	-	-	-	-	-	-	-	-	220
315	-	1070	990	-	584	555	535	505	-	445	-	337	321	292	239
-	450	-	-	1080	-	-	-	-	540	-	432	-	-	-	250
355	-	-	1150	-	635	605	580	549	-	500	-	370	350	318	262
-	500	-	-	1200	-	-	-	-	600	-	480	-	-	-	273
400	-		1250	-	710	675	650	611	-	540	-	410	390	356	288
450	600		-	1440	-	-	-	-	720	-	576	-	-	-	320
500	-	-	1570	-	900	855	820	780	-	680	-	515	494	450	350
560	-		1760	-	1000	950	920	870	-	760	-	575	549	500	380
630	-		1980	-	1100	1045	1020	965	-	850	-	645	605	550	425
710	-		-	-	1260	1200	1140	1075	-	960	-	725	694	630	480
800	1090	-	-	-	1450	-	1320	1250	•	1100		830	790		550
900	1220		-	-	1610	-	1470	1390	-	1220	-	925	880	-	610

⁽¹⁾ Valores de acuerdo con el NEC (National Electrical Code).

Estos valores son indicativos, varian según el tipo de motor, # polos y el fabricante

 $P = \sqrt{3} \cdot U \cdot I \cdot \cos \varphi (W)$